Certificate course on

CERTIFICATE COURSE IN BIOPHYSICAL TECHNIQUES

(15-11-2021 to 15-12-2021)

(OFFLINE MODE)

Organized by

Department of Biotechnology

Kakatiya Government College

Hanamkonda-506001

Certificate programs offered during 2021-22

KAKATIYA GOVERNMENT COLLEGE, HANAMKONDA.

CERTIFICATE COURSE IN BIOPHYSICAL TECHNIQUES

SYALLABUS

30 Hours

Unit:I

Diffusion : Boyle's law, Charles' law, Gas laws (Ideal gas and real gas equation), Dalton's law of partial pressure. Diffusion in fluids, Fick's laws(Statement and explanation), Facilitated diffusion e.g. gas exchanges in lungs.

Unit:II

Osmosis : Definition, contrast with diffusion, Tonicity and isotonic solutions. Effect of tonicity on R.B.C. Cell nutrition.

Unit:III

Centrifugation

Theory of ultracentrifugation, Relative centrifugal force (RCF), Sedimentation rate sedimentation coefficient, Isopycnic (equilibrium) sedimentation, (discussion with example e.g. Meselson and Stahl Experiment)

Unit:IV

Spectrophotometry and other methods :Absorption of light, Transmittance, Absorbance(Optical density), Lambert-beer law, Method of determining Absorption spectrum of chlorophyll by spectrophotometer. A brief idea on Dialysis,Chromatography(Gel filtration,Ion exchange), Electrophoresis.

Certificate programs offered during 2021-22

KAKATIYA GOVERNMENT COLLEGE, HANAMKONDA.

CERTIFICATE COURSE IN BIOPHYSICAL TECHNIQUES

SYALLABUS

30 Hours

Unit:1

Diffusion : Boyle's law, Charles' law, Gas laws (Ideal gas and real gas equation), Dalton's law of partial pressure. Diffusion in fluids,Fick's laws(Statement and explanation), Facilitated diffusion e.g. gas exchanges in lungs.

Unit:II

Osmosis : Definition, contrast with diffusion. Tonicity and isotonic solutions. Effect of tonicity on R.B.C. Cell nutrition.

Unit:III

Centrifugation

Theory of ultracentrifugation, Relative centrifugal force (RCF), Sedimentation rate sedimentation coefficient, Isopycnic (equilibrium) sedimentation, (discussion with example e.g. Meselson and Stahl Experiment)

Unit:IV

Spectrophotometry and other methods :Absorption of light, Transmittance, Absorbance(Optical density), Lambert-beer law, Method of determining Absorption spectrum of chlorophyll by spectrophotometer. A brief idea on Dialysis,Chromatography(Gel filtration,Ion exchange), Electrophoresis.

INCHARGE, Ospartment of Bio-Technology, SARATIYA GOVT, COLLEGE, GANAMSONDA-598-001 A.P.

Kakatiya Government College, Hanumakonda.

Department of Biotechnology

Resolution

Date: 25-10-2021

As per the instructions given by the Principal, a meeting was held in the department of Biotechnology and resolved to conduct the following activities for the academic year 2021-22

1. Planning to conduct one day seminar in this academic year.

2. It is resolved to conduct two certificate courses in this academic year

First certificate course entitled " Biophysical Techniques " in the month of November 2021.

Second certificate course entitled " Basics of Medical Microbiology" in the month of January 2022.

3. To conduct various Programmes /Activities under MOUs

UANASEONDA.508 DOL A KARATTIA DEP

	1	Biophysical		A	cho	9	Uer		1				- fr	4		to		1	5-	12	- 6	1		5	~				
Attendance Register of				Year, Class										Certificate Course							e								
			Month	No	1 d		10	24	72	22	20	71	24	2.	2		- 1	Det	21	1	1	1	1	19	1.	13	12	12	
5	NAME OF THE STUDENT		Dato Sig. ol	15 1	6	4					The					-	30	1	2	1	#	611			1	17	12	11	
i.	NAME OF T	E STUDENT	Lecturer	Jh J	12	17	44	-	-	H	-		11	1	1	2	Th	sh	h	h	1	24	-	-	-1-1	100		1	
			No. of Lecturs	1	2 3	4	5	6	7	-	100	10	11	1	-		1	15	16	17	18	19 2	20 2	21 2			-	-	
06-20- 3 0	Dhawath	Naxesh		X	XY	()	X	+	X	a	-	1	4x	0	-	X	4	Y	x	×	×	X	- t-	Xy	-	XX	-	X	
6-70-300	Gandamala	Barrena		X	XY	X	X	+	K	-	×	+**		+-	+	X	1	×	Х	a	a	1	-	-	-	10	-	-	
- 3102	Banoth	Maherh		×	a :	10	X	-	-	+-	-	+	1	+	-	0-	K	X	У,	*	×	×	*	-	+	-		XX	-
- 3/11	Thota	Mahesh		X	X	1	-	< a	X	+	XX	+	+	+	+	X	X	X	×	A	Х	X	X	X	-	XX	-	(JX	-
- 34/3	Muppidi	Bhayani		×	XI	()	(>	17	4)	XX	+	× 7	X	X	-	X	X	X	×	×	×	×	×	A		XX	-	41	×
-3105	Gatla	Ramesh		X	X	X. 7	(0	2)	-	-	7	-	-	-	4	0.	Tx	a	X	*	x	a.	X	X	×	-	-	-	×
-3016	Thellow	Sminiras		X	a,	×	2	K I	x O	-	-	+	-	+	X	×	T,	×	×	ay	×	×		X	×	XI	a	-	×
- 3005	Kombula	Sainik		×	x	X	×	× /	XX	< >	< >	-	×)	-+-	(X	5	1	X	-	X	×	X		×		X	-	×
- 3463	Bhukya	Knoi Kellonpik		×	a.	×,	< >	(0	1 >	40	2)	_	21	-		R	T.	4	× 7	4	a	1.4			-	-	101	100	×
-3406	hourspu	Lavarya.		X	×	X	X	XX	()	X	X	X	×	×	×	×	10	Y	X	10	X	X	X	×	X	100	0-		0.
8-21-351	Agaboim	Selling		a	×	X	a.	1 3	()	K	ax	-+	a	+	×	X		XX	0	. 0	Y	×	×	x	X	X	X	X	X
- 3106	Kashvend	Tejasui		X	a	×	X	(X>	< 1	<u> </u>	Y		-	X	X	1	X	X	11	×	-	-	-		-	10000	X	a
- 3:107	Kuselly Suarism	Akhila		X	×	X	×.	a	×	a	4	ap	(a	1	a		XX	>	4	-	-	100	-	K	X	a		K
-3410	Surram	Deepak		X	a	X	-	-		-	a	×	-	-	×	×)	>	()	$\langle \rangle$	< >	17	X	×	×	1.00	X	×	X
- 3109	Pothange			×	X	X	-	×	701	X				-	X	X		XX	1000		×	100	-	X	1	X	1.1		X
- 312	Kanakan	Ragha	-	a		X	200	-+	-	X	4	-	-	×	×	×	_	10	2			()		-	17	-	X	-	У
-3101	Aitha	Ajay	-	X	X	×		×	X	×	-	×	a	X	X	X	_	X	X	XI	1 >	< (-	-	X	1.	a
-34(A	Teppa	Kesthik		a	-	a	a	7	a	×	X	a	-	×	X	×	-				1	<>	_	-		1	1	-	X
-30.61	Yalsun	Dowinder		X	+	1	2	X	X	X	-	×	-	Х	X	10.	-		a	XY	(* :	××		-	-	10	-	X
-3058	Naganelli	Deekshi	-	X		×	a	a	X	×	X	X	-	X	X	×	_	10	×	X	1000	-	X	2)		×	-	-	X
06-2-211	Bhukya	Theorem	-	X	-	×	a	×	X	X	X	~	X	Xa	×	× 0-	-	X	×				_	_	2,		-	-	-
- 3402	chiganti	Snichenle		X	-	1		××	-	ax	X	a	X	x	×		-	0		_			_	XX	-	XX	-	XX	-
- 3109	Putto	Parametr	¢r	0	-	×	0-		X		×	-	×	x	×	×	-	X					a			a)		11	
- 3120	Suthrapy M. Bhua	Kehjam	-	×	1	X	x	XX	X	XX	X	X	X	-	X	X	-,	X	×	×			X	-	_	-	_	XX	>
- 3908		mica	+	-	-	1		X	x	X	a. X	1		a		a	-	×	×	×	a	X	X	×			-	XI	a
-3910	Paka	Nethal	-	X	-	0	X	-	-	~	X	1	X	a		X	-	ĸ	×	×	X	×	_			-		XY	-
-3913	Thymulay	Raja Naxainda	1		-			X	X	1		0.		-	×	×	-	×	×	×	×							X	
-344	Thaupath Make	i Ssidevi	+		a	Ê	ax	X	×	a	X	L^	×	×	-	a	-	X	×	×	a.	a X	Х	×		×		XC	a
-3809	Mame	Vijay	-		X		a					_		+	-	×	-	×	×	×	×	X	X	×	x	×	×	×	*
06-27-384	Konme	i Stiden Vijay Sanjay	-	-	1	1	a	X	X	X	X	×	1	×	X	×	_	X	a	×	X	X	X	a	×	x	d	×	X
				+	+	+	+	-	-	+	+	+	+	+	+			-		1			1	1			1	2	
+				-	+	+	-	-	-	+	+	+	+	+	+		-		4			8				1	0	P	F
1			-	+	+	-	-	-	-	+	+	+	+	+	+		_	1	10	A.	y.	rech	gele	×1.	-	1	T	T	
			-	-	+	-	-	-	+	+	+	+	+	+	+	-	-	12 111	t.	50	NT.	do	120		Г	T		T	Γ
1	_		-	-	+	-	-	-	-	-	+	+	+	+	+	-	6	A R R	Alis	,Ctsi	01.4	100	1	-	T	1	T	T	T
							1		L					1		1	_					T	T	T	t	+	+	t	+

Certificate:

